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Private Data Analysis 

• Individuals share private data with a curator.


• The Curator manages the release of the data to Analysts.


• Two conflicting goals: - Privacy: protecting the individuals’ privacy.


- Utility: learning useful information about the population.

Individual 1

Individual n

Data Curator Data Analyst

Queries 

Answers 
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What is Differential Privacy?

• First proposed in 2006 [Dwork et al. '06].


• Goal: To learn as little as possible about an individual while learning 
useful information about a population.


• Idea: To add a controlled amount of randomness to the dataset.


• Highlighted applications: 

- Google, for sharing historical traffic statistics [Erlingsson et al. '14].


- Apple's private learning of users' preferences [Apple DP team '17].


- Microsoft for telemetry in Windows [Ding et al. ’17].


- The 2020 United States Census.
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Some Issues with Traditional Differential Privacy 

• A “one-size-fits-all" approach to setting a global privacy level can be 
damaging to both utility and privacy. [Jorgensen et al. '15]


• Some groups might need more protection than others. [Kohli et al. '18]


• There may also be statutory mandates, demanding publication of certain 
datasets with more accuracy. (e.g. US Census)
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Main Contributions

• The notion of Heterogeneous Differential Privacy.


• Characterizing optimal schemes for binary functions.


• Presenting a low complexity algorithm for finding such schemes.
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• Family of datasets . 


• A symmetric relationship in  where  are said to be neighbors.

𝒟

𝒟 d ∼ d′ 

Traditional Differential Privacy
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• Family of datasets . 


• A symmetric relationship in  where  are said to be neighbors. 


• An output space .


• True function . 


• Random function  called random mechanism.

𝒟

𝒟 d ∼ d′ 

𝒬

T : 𝒟 → 𝒬

ℳ : 𝒟 → 𝒬

 is -differentially private if, for any  and ,
ℳ ε d ∼ d′ 𝒮 ⊆ 𝒟

Pr[ℳ(d) ∈ 𝒮] ≤ eε Pr[ℳ(d′ ) ∈ 𝒮]

Definition: Differential Privacy [Dwork et al '06]

Traditional Differential Privacy
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• Family of datasets . 
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• True function . 
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• Family of datasets . 


• A symmetric relationship in  where  are said to be neighbors. 


• An output space . We consider binary .


• True function . 


• Random function  called random mechanism.


• Goal: Approximate the true function   by an -DP mechanism .

𝒟

𝒟 d ∼ d′ 

𝒬 𝒬 = {1,2}

T : 𝒟 → 𝒬

ℳ : 𝒟 → 𝒬

T ε ℳ

Traditional Differential Privacy
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 is -differentially private if, for any  and ,
ℳ ε d ∼ d′ 𝒮 ⊆ 𝒟

Pr[ℳ(d) ∈ 𝒮] ≤ eε Pr[ℳ(d′ ) ∈ 𝒮]

Definition: Differential Privacy [Dwork et al '06]
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Differential Privacy via Graphs
I. In [D’Oliveira et al. 21’], differential privacy was 

presented in a graph theoretical framework, 
where:
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Differential Privacy via Graphs
I. In [D’Oliveira et al. 21’], differential privacy was 

presented in a graph theoretical framework, 
where:


• Vertices represent datasets.


• Edges connect neighboring datasets.


• Colors represent the output of true function.


• A mechanism is a randomized coloring.


II. The optimal mechanism can be characterized in 
terms of its value at the boundary.
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I. In [D’Oliveira et al. 21’], differential privacy was 
presented in a graph theoretical framework, 
where:


• Vertices represent datasets.
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• Colors represent the output of true function.


• A mechanism is a randomized coloring.


II. The optimal mechanism can be characterized in 
terms of its value at the boundary.
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A mechanism  is boundary homogeneous if the probabilities at the boundary 
are the same.

ℳ

Definition: Boundary Homogeneous
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where:
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Differential Privacy via Graphs
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I. In [D’Oliveira et al. 21’], differential privacy was 
presented in a graph theoretical framework, 
where:


• Vertices represent datasets.


• Edges connect neighboring datasets.


• Colors represent the output of true function.


• A mechanism is a randomized coloring.


II. The optimal mechanism can be characterized in 
terms of its value at the boundary.

Let the boundary probabilities be equal. Then, there exists at most one optimal  
-DP mechanism. (A closed form is presented in the paper.)ε

Theorem [D’Oliveira et al. 21’]
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Homogeneous 
Differential Privacy
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Heterogeneous 
Differential Privacy

• Different privacy levels.


• Different probability distributions at 
the boundary
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Special Case: Path Graph
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

Differential Privacy conditions between  and :


• 


• 


• 


• 


d0 d1

Pr[ℳ(d1) = 1] ≤ eε Pr[ℳ(d0) = 1]

(1 − Pr[ℳ(d0) = 1]) ≤ eε(1 − Pr[ℳ(d1) = 1])

Pr[ℳ(d0) = 1] ≤ eε Pr[ℳ(d1) = 1]

(1 − Pr[ℳ(d1) = 1]) ≤ eε(1 − Pr[ℳ(d0) = 1])

α

mailto:sahel.torkamani@ist.ac.ir


Heterogeneous Differential Privacy via Graphs 

  

/ 13sahel.torkamani@ist.ac.ir / 16ISIT 2022

Special Case: Path Graph

dndn−1dn−2
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d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

Differential Privacy conditions between  and :


• 


• 


• 


• 


d0 d1

Pr[ℳ(d1) = 1] ≤ eε Pr[ℳ(d0) = 1]

(1 − Pr[ℳ(d0) = 1]) ≤ eε(1 − Pr[ℳ(d1) = 1])

Pr[ℳ(d0) = 1] ≤ eε Pr[ℳ(d1) = 1]

(1 − Pr[ℳ(d1) = 1]) ≤ eε(1 − Pr[ℳ(d0) = 1])

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

Upper bound on  imposed by :





d1 d0

Pr[ℳ(d1) = 1] ≤ min (eε Pr[ℳ(d0) = 1],
eε − 1 + Pr[ℳ(d0) = 1]

eε )

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

• 
Pr[ℳ(d1) = 1] ≤ min (eε Pr[ℳ(d0) = 1],
eε − 1 + Pr[ℳ(d0) = 1]

eε )

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

• 


• 


Pr[ℳ(d1) = 1] ≤ min (eε Pr[ℳ(d0) = 1],
eε − 1 + Pr[ℳ(d0) = 1]

eε )
Pr[ℳ(d2) = 1] ≤ min (eε Pr[ℳ(d1) = 1],

eε − 1 + Pr[ℳ(d1) = 1]
eε )

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

• 


• 





• 


Pr[ℳ(d1) = 1] ≤ min (eε Pr[ℳ(d0) = 1],
eε − 1 + Pr[ℳ(d0) = 1]

eε )
Pr[ℳ(d2) = 1] ≤ min (eε Pr[ℳ(d1) = 1],

eε − 1 + Pr[ℳ(d1) = 1]
eε )

⋮

Pr[ℳ(dn−1) = 1] ≤ min (eε Pr[ℳ(dn−2) = 1],
eε − 1 + Pr[ℳ(dn−2) = 1]

eε )

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

• 


• 





• 


•

Pr[ℳ(d1) = 1] ≤ min (eε Pr[ℳ(d0) = 1],
eε − 1 + Pr[ℳ(d0) = 1]

eε )
Pr[ℳ(d2) = 1] ≤ min (eε Pr[ℳ(d1) = 1],

eε − 1 + Pr[ℳ(d1) = 1]
eε )

⋮

Pr[ℳ(dn−1) = 1] ≤ min (eε Pr[ℳ(dn−2) = 1],
eε − 1 + Pr[ℳ(dn−2) = 1]

eε )
Pr[ℳ(dn) = 1] ≤ min (eε Pr[ℳ(dn−1) = 1],

eε − 1 + Pr[ℳ(dn−1) = 1]
eε )

α
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Special Case: Path Graph

dndn−1dn−2

11

d1 d2 d4d3d0

ε0 ε1 ε2 ε3 εn−1εn−2

The optimal binary-valued heterogeneous differentially private mechanism  is 
given by


where

ℳ*
Lemma: Differential Privacy for the Path Graph

Pr[ℳ*(vi) = 1] =
eεi−1+…+ε1+ε0 α

e−εi−1−…−ε1−ετ+ετ−1+…+ε1+ε0 α + 1 − e−εi−1−…−ε1−ετ

i ≤ τ

i > τ

τ = arg min
i∈[n]

{
1
α

≤ eεi−1+…+ε1+ε0(eεi + 1)} .

α
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Algorithm

dB
1

12

α1

• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


dB
i

αi
dB

i
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Algorithm

dB
1

12

α1

S1
• For each boundary vertex  with a fixed 

value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


dB
i

αi
dB

i

Si
dB

i
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Algorithm

dB
1

12

α1

S1

N(S1)
d1

• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .


dB
i

αi
dB

i

Si
dB

i

Si Si
Si+1

Si
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value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.
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• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
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Si Si
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Algorithm

dB
1

12

α1

S1N(d1)

d1

• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .
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imposed by .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .


• Let  be the lowest upper bound on  
imposed by .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .


• Let  be the lowest upper bound on  
imposed by .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .


• Let  be the lowest upper bound on  
imposed by .
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• For each boundary vertex  with a fixed 
value , the upper bound on the other 
vertices imposed by  is calculated in the 
following steps.


• Let  be the set of vertices which their upper 
bound (imposed by ) is calculated. 


• In each step, we find the least upper bound 
among the neighbors of  imposed by  and 

 is defined by adding the corresponding 
vertex to .


• Let  be the lowest upper bound on  
imposed by .
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• Let  be the lowest upper bound on  
over all the choices of .
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The algorithm above finds the unique optimal heterogeneous DP mechanism in 
polynomial time, in the order of the number of vertices and edges.

Theorem 
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Thank You  
For Your Attention

Any Questions?
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